
A Test Generation Framework for Distributed
Fault-Tolerant Algorithms

Alwyn Goodloe
National Institute of Aerospace

David Bushnell
TracLabs/NASA Ames

Corina S. Păsăreanu
Carnegie Mellon

University/NASA Ames

Paul Miner
NASA Langley

ABSTRACT
Heavyweight formal methods such as theorem proving have
been successfully applied to the analysis of safety critical
fault-tolerant systems. Typically, the models and proofs
performed during such analysis do not inform the testing
process of actual implementations. We propose a frame-
work for generating test vectors from specifications written
in the Prototype Verification System (PVS). The method-
ology uses a translator to produce a Java prototype from
a PVS specification. Symbolic (Java) PathFinder is then
employed to generate a collection of test cases. A small ex-
ample is employed to illustrate how the framework can be
used in practice.

1. INTRODUCTION
Verification and validation of distributed fault-tolerant sys-
tems is a continuing challenge for safety-critical systems. In
order to provide V&V support for distributed fault-tolerant
algorithms, we are exploring a combination of technologies.
Ultimately, fault tolerance consists of establishing and main-
taining consensus between distributed computational
resources, especially when a bounded subset of these re-
sources is faulty. A full analysis requires an understanding
of both the distribution and failure modes of the sensors,
effectors, and computational resources. There are several
different valid ways of architecting these systems to meet
fault-tolerance requirements. This compounds the problem
of providing a collection of tools supporting V&V activities.
Substantiating fault-tolerance claims requires a combination
of analysis and test. We are researching an approach to V&V
where the test-vectors are generated from formal models ex-
pressed using SRI’s Prototype Verification System (PVS).

Given that safety-critical systems are usually developed to
exacting certification criteria, system failures are often the
result of unanticipated events such as dirty voltage on a

bus or a hardware fault. A formal model of a fault-tolerant
system should explicitly model the faults that the system can
handle and a testing regime should validate that the system
does indeed process these as advertised. Thus testing the
actual system must include injecting faults into the system.
One preferred way to do this is to employ a test harness that
can inject data into the system so that it appears as if a fault
has occurred. Given a PVS specification, we are developing
a methodology for generating these tests automatically.

Rather than develop a new tool suite from scratch, we ap-
ply two existing tools to the task of test case generation. A
PVS to Java translator, developed to create executable pro-
totypes from the specification, is applied to generate a real-
ization of the protocol preserving the correctness properties
shown to hold in the PVS model. Symbolic Java PathFinder,
a model-based automated software test generation tool [9],
is then used to generate test vectors that can be used by
V&V engineers to test actual protocol implementations.

The paper is organized as follows. We first introduce a case
study of a failure in the space shuttle. The next section
provides an overview of fault-tolerance. This is followed by
an overview of a PVS model of a small consensus protocol.
Next is a brief description of the PVS-to-Java translator. We
then discuss Symbolic Java PathFinder. Section 7 discusses
test case generation for the protocol. Finally, we discuss
related works and conclude.

2. FAILURE IN THE SPACE SHUTTLE

The Space Shuttle’s data processing system has four gen-
eral purpose computers (GPC) that operate in a redundant
set. There are also twenty three multiplexer de-multiplexers
(MDM) units aboard the orbiter, sixteen of which are di-
rectly connected to the GPCs via redundant shared busses.
Each of these MDMs receive commands from guidance navi-
gation and control (GNC) running on the GPC and acquires
requested data from sensors attached to it, which is then sent
to the GPCs. In addition to their role in multiplexing/de-
multiplexing data, these MDM units perform analog/digital
conversion. Data transfered between the GPC and MDMs
is sent in the form of serial digital data.

The GPCs execute redundancy management algorithms that

Figure 1: Shuttle Data Processing System (GPCs
and FA2)

include a fault detection, isolation, and recovery (FDIR)
function. During the launch of shuttle flight Space Trans-
portation System 124 (STS-124), there was reportedly a pre-
launch failure of the fault diagnosis software due to a “non-
universal I/O error” in the second flight aft (FA2) MDM [3],
which is polled by the GPCs as shown in Figure 1. Accord-
ing to [3, 4], the events unfolded as follows:

9 A diode failed on the serial multiplexer interface adapter
of the FA2 MDM.

9 GPC 4 receives erroneous data from FA2. Each node
votes and views GPC 4 as providing faulty data. Hence
GPC 4 is voted out of the redundant set.

9 Three seconds later, GPC 2 also receives erroneous
data from FA2. In this case, GPC 2 is voted out of the
redundant set.

9 In accordance with the Space Shuttle flight rules [22],
GPC 2 and GPC 4 are powered down.

9 GPC 3 then reads FA2’s built-in test equipment and
determines that GPC 3 is faulty at which point it too
is removed from redundancy set leaving only GPC 1
at which time engineers terminated the work and the
problem with FA2 was isolated and the unit replaced.

The above set of events sequentially removed good GPC
nodes, but failed to detect and act on the faulty MDM.
Based on the analysis reported in [4], it appears the system
had a single point of failure. Even though the nodes were
connected to the MDM via a shared bus, conditions arose
where different nodes obtained different values from MDM
FA2.

3. FAULT-TOLERANCE
The terms ‘failure’, ‘error’, and ‘fault’ have technical mean-
ings in the fault-tolerance literature. A failure occurs when
a system is unable to provide its required functions. An er-
ror is “that part of the system state which is liable to lead to
subsequent failure,” while a fault is “the adjudged or hypoth-
esized cause of an error” [20]. For example, a sensor may
break due to a fault introduced by overheating. The sensor
reading error may then lead to system failure.

We are primarily concerned with architectural-level fault-
tolerance [8]. A fault-tolerant system is one that continues
to provide its required functionality in the presence of faults.

A fault-tolerant system must not contain a single point of
failure such that if that single subsystem fails, the entire
system fails (for the faults tolerated). Thus, fault-tolerant
systems are often implemented as distributed collections of
nodes such that a fault that affects one node or channel will
not adversely affect the whole system’s functionality.

Faults can be classified according to the hybrid fault model
of Thambidurai and Park [28]. Here, we characterize the
faults of a node in a distributed system based on the mes-
sages other nodes receive from it. The same characterization
could be made of channels. First, a node that exhibits the
absence of faults is non-faulty or good. A node is called be-
nign or manifest if it sends only benign messages. Benign
messages abstract various sorts of misbehavior that are reli-
ably detected by the transmitter-to-receiver fault-detection
mechanisms implemented in the system. For example, a
message that suffers a few bit errors may be caught by a
cyclic redundancy check. In synchronized systems, nodes
that send messages received at unexpected times are also
considered to be benign. A node is called symmetric if
it sends every receiver the same message, but these mes-
sages may be arbitrary. A node is called asymmetric or
Byzantine if it sends different messages to different receivers,
and at least one of the messages received is not detectably
faulty [19]. (Note that the other message may or may not
be incorrect.)

We model faulty behavior exclusively within the communi-
cation model. This leads to an observational classification of
fault effects. The fault effect classification model we employ
is derived from the Azadmanesh and Kieckhafer [1] general-
ization of the Thambidurai and Park [28] hybrid fault model.
These fault classifications are from the perspective of the re-
ceivers. Each source node is classified according to its worst
observed error manifestation. The classification is a func-
tion of both the behavior of the node and how that behavior
is perceived by a specified collection of observers.

The nodes are classified according to the following defini-
tions:

good All receivers receive correct values.

omissive symmetric All receivers receive either correct
values or manifestly incorrect values (including the
possibility of no message at all). All receivers observe
the same pattern of messages.

omissive asymmetric Some receivers may receive correct
messages, while others may receive manifestly incor-
rect values.

transmissive symmetric All receivers observe the same
pattern of messages. Messages may be incorrect.

fully transmissive asymmetric (Byzantine) Receivers may
receive arbitrarily different values.

Some protocols are defined to operate correctly under the
assumption that the possible fault behaviors are limited to
specific subsets of these possible observable fault manifes-
tations. Whenever this is done, there is an obligation to

validate the fault hypotheses, since the various theoretically
possible fault manifestations have been observed in both lab-
oratory and deployed systems [11]. Likewise, if a system pur-
ports to continue to operate correctly under some bounded
number of Byzantine faults, this too must be validated.

In the case study given in Section 2 the nodes were connected
to the MDM via a shared bus, yet conditions arose where
different nodes obtained different values from MDM FA2.
This is consistent with the MDM FA2 failing in a Byzan-
tine fashion sending different values to the GPCs using the
topology in Figure 1. Note that the triple-redundancy vot-
ing scheme employed in the case of the shuttle would have
masked many faults, but not Byzantine faults. The design-
ers may have simply assumed that such Byzantine faults
were too unlikely to occur to warrant the additional com-
plexity needed to handle them, yet they appear to have oc-
curred in practice. This illustrates the need for the V&V
process to test not only the fault model advertised by the
system, but to test the assumptions built into that fault
model.

V&V of fault-tolerant systems requires that the test engi-
neer fully exercise the faults purportedly covered by the fault
model. In cases where the system’s fault model does not ac-
commodate Byzantine faults, it may still be desirable from
the V&V perspective to demonstrate that such assumptions
actually hold and if not, how a system functions in the pres-
ence of such faults. The tests must include faults that are
physically possible, but not logically anticipated. Such faults
may arise from hardware failures, radiation faults, as well as
from traditional inputs. So the V&V engineer must produce
a range of inputs, a range of faults, and inject the said faults
into the system and observe their effects.

4. FORMAL MODEL
Consider the situation of a transmitter node (this could be a
sensor as in the shuttle example) that sends data to a num-
ber of receiver nodes. As we have seen, the transmitter, a
receiver, or the interconnect may suffer a fault that causes a
receiver to compute a received value that differs from those
received by the other receivers. A simple variant of the oral-
messages Byzantine protocol [19] can be employed to mask
a bounded number of these errors. The protocol that we
consider uses Relay nodes. The data flow of the protocol is
illustrated in Figure 2, where the transmitter sends a mes-
sage to each of the relay nodes, which, in turn, sends the
value they received to each of the end nodes. At the re-
ceiver, a majority vote is performed on the values received.
If the number of faults are appropriately bounded, then the
nodes have achieved consensus.

We built a small PVS model of this protocol, where each
node has a core functional component and network inter-
face (NIC) (receiver/sender) components. This architecture
is illustrated in Figure 3. The components are connected
by FIFO queues. A message sent from the transmitter to
the relay nodes is placed in the queue to the transmitter’s
NIC sender, which places the message in queues connect-
ing it to the receiver NICs at each of the relay nodes. The
relay module removes the message from the NIC receiver
queue and places it into a queue leading to the NIC sender,
which copies the message into the queue of each receiver.

Figure 2: Simple Oral Messages Protocol

We assume a synchronous execution model with the nodes
assumed to work in lock-step as if on a global clock. For
instance, the transmitter sends its value to its NIC sender
at clock tick 1, the value is sent to the relay node’s NIC
receiver at tick 2, etc.

In the fault model for our system, the transmitter is assumed
to be subject to fully transmissive asymmetric errors. The
relay nodes are assumed to be more reliable, say due to the
use of redundant pairs, but subject to omissive asymmetric
faults.

4.1 NIC Receiver
We now consider the PVS model of the NIC receiver in some
detail. The NIC receiver is parameterized by the number of
inbound communication channels, maxsize, and the global
time at which the state machine is to execute. The messages
are assumed to be of type Frame. The state of the NIC
receiver is formed from the product of the following:

9 wires : below(maxsize) --+ fifo[Frame]. The wires
connect the receiver NIC to the sender NIC. As il-
lustrated in Figure 3 each queue in the sequence is
connected to a different node.

9 from_nic : below(maxsize) --+ fifo[Frame]. This se-
quence of queues is used to pass the data received to
the relay or end receiver state machines.

9 enabled : below(maxsize) --+ boolean. If enabled(i)
is true, then the source node i (the source node at-
tached to wires(i)) is assumed to be valid. The value
can be false for a number of reasons including messages
being dropped or garbled.

9 pc is the current global clock value.

At this time, we do not model details of buffering, CRC
checks etc. Instead, we focus on capturing the fault model
at this node. The state machine defining this component
has the signature

NICReciver x AllReceiveAct ions --+ NICReceiver,

Figure 3: Structure of the Model

where AllReceiveAct ions is defined as

AllRecActions: TYPE = below(maxsize) → Actions.

The PVS datatype Actions defines the allowed faults and is
defined as follows:

Actions : DATATYPE
BEGIN

Good	 : Good?
Garbled	 : Garbled?
Sym (frame: Frame) : Sym?
Asym (frame: Frame) : Asym?

END Actions.

Recall that wires hold messages from each incoming chan-
nel and faults are not modeled anywhere else in our model
so a message is not corrupted or lost in transit. Instead,
we use AllReceiveAct ions to inject faults at the NIC re-
ceiver. This type acts as a filter so if AllRecActions (i) has
the value Good, the message received is assumed to be good
and is relayed on, the value Garbled is treated as a benign
fault or a dropped message and would be dropped, the value
Sym (frame) would result in using the value frame, with the
same value sent to each node, and Asym(frame) would re-
sult in the value frame being placed in the fom_nic (i) queue,
where each i may get a distinctly different value.

Each of the fault model classifications has an associated PVS
type that constrains the values of the filter. For instance
good messages are defined by the type:

AllGoodRecAction: TYPE =
{f: AllRecAction| ∀ (i: below (maxsize)) : Good? (f (i))},

omissive asymmetric faults are defined by the type

OmissAsymRecAction : TYPE = {f : AllRecActions |
∀ (i: below (maxsize)) : Good? (f (i)) ∨ Garbled? (f (i))}

and transmissive asymmetric faults are defined by the type:

TransAsymRecAction: TYPE =
{f: AllRecActions | ∀ (i: below (maxsize)) : Asym? (f (i)) } .

The PVS code for updating the from_nic component of the
NICReceiver state is given as follows.

A(i: below (maxsize)) :

CASES a (i) OF
Good : IF ¬ empty_fifo? (s ‘wires (i)) THEN

enqueue (topof (s ‘ wires (i)) , s ‘ from_nic (i))
ELSE empty_fifo

ENDIF,
Garbled : empty_fifo,

Asym (frame) : enqueue (frame , s ‘ from_nic (i)),
Sym (frame) : enqueue (frame , s ‘ from_nic (i))

ENDCASES,

which returns a new sequence of queues with the values de-
termined by entries in the action sequence a. The state ma-
chine also removes the value received from each of the fifo
queues comprising wires. If message i was garbled, then the
corresponding entry in enabled is set to false.

Above the state machines is a relational model where the
components get connected together and that drives the state
machine transitions. In the case of the NIC receiver, the
fault model applied to a particular node is chosen. Existen-
tial quantification is used to model nondeterministic choice.
Ideally we will want the faults to be created in a separate
module from the system under test in order to model a test
harness.

5. PVS TO JAVA TRANSLATOR
A PVS-to-Java translator [15] has been constructed as part
of a collaborative effort between NIA and the Radboud Uni-
versity Nijmegen. The input to our code generator is a
declarative specification written in PVS. Since we aim at a
wide range of applications, we do not fix the target language.
Indeed, the tool first generates code in Why, an intermediary
language for program verification [12]. Our current proto-
type generates Java annotated code from the Why code. In
the future, we may implement outputs for other functional
and imperative programming languages.

In addition to enabling multi-target generation of code, an-
other benefit of an intermediate language is that transfor-
mations and analysis that are independent from the target
language can be applied to the intermediate code directly.

Consider the PVS datatype Actions defined in the Section 4.
Each of the different actions becomes a subclass that ex-
tends the class Actions and has a constructor that takes
the generic class Frame as an argument.

public class ReceiveAction <Data> {
public class Actions { public Actions() {}}
public class Sym extends Actions {
FrameTh<Data>.Frame frame;

Krakatoa Why program Caduceus	 I
n

(Annotated)
W hy2XM L

(Annotated)
Java program C program

XML2Java .4_ Why representation
XML2Cprogram

'-------------------- ------ 47 ------=

Other languages	 -4-- XMLWhy2...

PVS specification

PVS2W hy

Figure 4: Multi-target generation of verifiable code

public Sym (FrameTh<Data >.Frame frame) {
this. frame = frame; } }

The higher order use of defined functions is facilitated by a
special Lambda class. This generic abstract class demands
that an application function is supplied for each instance.

public abstract class Lambda<T1 , T2> {
abstract public T2 apply (T1 obj); }

For all defined functions in PVS, a higher order version is
generated that satisfies the requirements of the Lambda class.

public Lambda<Act ions, Boolean> SymRecognizer =
new Lambda<Actions , Boolean> () {
public Boolean apply (final Actions actions) {
return SymRecognizer (actions) ; } } ; }

All functions are translated into currified syntax. This way
it is possible to translate all higher order uses of functions,
including partial application, into working Java programs.

In its current phase of development, the translator can only
translate PVS specifications that are written in functional
style, in particular, as a state machine. Relational speci-
fications, which typically model nondeterministic behavior,
must be hand coded. The existential quantification in the
specification, which is used to nondeterministically gener-
ate actions, gets replaced by hooks into the Symbolic Java
PathFinder tool.

6. SYMBOLIC (JAVA) PATHFINDER
For test case generation, we will use Symbolic (Java)
PathFinder (SPF) [9], a symbolic execution framework built
on top of the Java PathFinder model checker [23]. SPF com-
bines symbolic execution and constraint solving techniques
for the automated generation of test cases that achieve high
coverage. Symbolic PathFinder implements a symbolic exe-
cution framework for Java byte-code. It can handle mixed
integer and real inputs, input data structures and strings,
as well as multi-threading and input pre-conditions.

Symbolic execution [18] is a well-known program analysis
technique that uses symbolic values instead of actual data
as inputs and symbolic expressions to represent the values
of program variables. As a result, the outputs computed
by a program are expressed as a function of the symbolic
inputs. The state of a symbolically executed program in-
cludes the (symbolic) values of program variables, a path
condition (PC), and a program counter. The path condition
is a boolean formula over the symbolic inputs, encoding the
constraints which the inputs must satisfy in order for an ex-
ecution to follow the particular associated path. These con-
ditions can be solved (using off-the-shelf constraint solvers)
to generate test cases (test input and expected output pairs)
guaranteed to exercise the analyzed code.

Symbolic PathFinder implements a non-standard interpre-
tor for byte-codes on top of JPF. The symbolic information
is stored in attributes associated with the program data and
it is propagated on demand during symbolic execution. The
analysis engine of JPF is used to systematically generate and
explore the symbolic execution tree of the program. JPF is
also used to systematically analyze thread interleavings and
any other forms of non-determinism that might be present
in the code; furthermore JPF is used to check properties of
the code during symbolic execution. Off-the-shelf constraint
solvers/decision procedures are used to solve mixed integer
and real constraints. We handle loops by putting a bound
on the model-checker search depth and/or on the number of
constraints in the path conditions.

By default, Symbolic PathFinder generates vectors of test
cases, each test case representing input-output vector pairs.
In order to test reactive systems, such as the fault toler-
ance protocols that we are studying here, we have extended
Symbolic PathFinder to also generate test sequences (i.e., se-
quences of test vectors) that are guaranteed to cover states
or transitions in the models (other coverages such as con-
dition, or user-defined are also possible). This works by
instructing Symbolic PathFinder to generate and explore
all the possible test sequences up to some user pre-specified
depth (or until the desired coverage is achieved) and to use
symbolic, rather than concrete, values for the input param-
eters.

7. PRELIMINARY RESULTS: TEST CASE
GENERATION

We have begun applying Symbolic PathFinder to the Java
code generated from the PVS specifications for the case
study described in Section 4. Each of the PVS models for the
components of the system (wires, senders, receivers, relays,
and so on) was translated into a Java class through the pro-
cess described in Section 5. We applied SPF to these classes
combined with the hand-written driver code (also described
in Section 5).

Both the connections among the components and the model’s
execution policy are implemented in the driver code. The
Java code that was automatically derived from the PVS
specifications does not assume any particular inter-component
connections or execution policy. Since this case study ini-
tially assumes a synchronous execution policy with a global
clock, our first implementation of a driver is a simple single-
threaded model which can be outlined as:

... wire components together ...

for (int pc=0; pc<maxPc ; pc++) {
sender1 . step();
nicSender1 . step();
nicReceiver1 . step();
...	 }

To perform test case generation, we identified the inputs to
the protocols as being the different types of faults that can
be injected on the receiver side to test the fault tolerance
behavior. In the PVS model, the four possible component
fault types (Good, Garbled, Symmetric, Asymmetric) are in-
troduced into the NIC Receiver through the Actions PVS
datatype (see Section 4.1). However, our Java code sim-
plifies this by implementing the four fault types as simple
integers in the range 0, . . ,3. This is only for convenience
— it does not materially affect the model.

As a second simplification for this initial trial, we modeled
only a single sender wired to two receivers. Future runs
will expand the model to cover the full case study shown in
Figure 3.

In order to generate test cases with SPF, we needed to an-
notate the Java code so that SPF knows that the integer
Actions are the symbolic variables for which path condi-
tions must be derived. This is easily done. The original
driver code which sets up the array of actions (i.e. possible
faults):

int[] actions = new int[maxsize];
for (int i = 0; i < maxsize; i++)

actions [i] = .. . some fault type in 0,1,2,3...;

is modified to tell SPF that the integers in actions[] are
to be treated symbolically:

int[] actions = new int[maxsize];
for (int i = 0; i < maxsize; i++)

String symVarName = "rcvr-" + (rcvrID++) "-error";
actions [i] = Debug . getSymbolicInt (0,3, symVarName);

Debug. getSymbolicInt (min, max, name) is a utility method
in SPF which tells the model checker to generate a symbolic
integer named name whose range is min... max. This is the
only annotation needed to apply SPF.

Running SPF then produces the test inputs from the path
conditions:

Constraint 1:
rcvr-1-error == Good &&

rcvr-0-error == Good

Constraint 2:
rcvr-1-error == Garbled &&
rcvr-0-error == Good

Constraint 15:
rcvr-1-error == Symmetric &&

rcvr-0-error == Asymmetric

Constraint 16:
rcvr-1-error == Asymmetric &&
rcvr-0-error == Asymmetric

We then ran the Java code with these sixteen tests and mea-
sured the coverage. In some Java classes the coverage was
less than 100%. Examining the code that was not executed
showed that most of statements were in code that is not
needed for the simple example used for this initial trial. A
few unexecuted lines are significant and are the result of
problems in the handwritten driver code. These problems
will be addressed in future our future work.

8. RELATED WORK
Almost all of the major theorem provers provide some form
of code generation their specification language. For instance,
theorem prover Isabelle/HOL even provides two code gener-
ators [2,16], ACL2’s [17] specification language is a subset
of Common Lisp, and Coq [5] has a generator [21] that ex-
tracts lambda terms and translates them in either Haskell
or OCaml. Unlike the generator we use in this paper, these
languages are all functional programming languages.

While there has been a lot of work on specification-based
testing and test case generation [10, 13,14], there has been
little work focusing on bridging the gap between theorem
proving and testing. The HOL-TestGen system [7] gener-
ates unit tests from Isabelle [24] specifications. The liter-
ature currently focuses on generating tests for common li-
braries. Sewell et al. have constructed a tool that uses HOL
specifications as an oracle for testing protocols [6], but their
focus is not on test case generation. An experiment in us-
ing PVS strategies to create random test cases directly from
PVS specifications is reported in [25].

The work presented here is also related to the use of formal
methods (including theorem proving and model checking)
for analyzing fault tolerance of circuits and systems [26,27].
In contrast to these works, our goal is to leverage the effort
of building and formally verifying models of such systems
into testing actual implementations.

9. CONCLUSION AND FUTURE WORK
Formal methods are increasingly accepted in the fault-tolerant
systems community as a means to analyze the correctness
of a design under the assumption of a well specified fault
model. Yet testing must be employed to validate an exe-
cutable against a model. Furthermore, testing should ex-
plore whether assumptions built into the fault model do
indeed hold. We present a methodology whereby a PVS
formal model drives the creation of a Java executable pro-
totype that can be used as reference implementation. Test
cases can then be generated by applying static analysis tech-
niques to the prototype implementation. The PVS-to-Java
translator and the Symbolic PathFinder tools enable this
process by automating much of the task.

The work reported in this paper is still preliminary and much
work remains to be done. The PVS-to-Java translator is still
evolving as features are added that will allow us to automati-
cally translate more of our model. SPF is similarly evolving.

For instance, the ability to generate tests from the abstract
datatype Actions is under development.

The results reported in Section 7 reflect experiments in-
tended to test the feasibility of the methodology and to
drive what features need to be added to our tools. Our
next milestone is to be able to exercise the full protocol seen
in Section 3. Furthermore, we need to extend the generation
of test cases to also include the expected output (e.g. var-
ious observable protocol states) as our goal is to use these
test cases to test actual implementations. The protocol un-
der consideration is very basic. Once we have mastered the
process for this example, we expect to focus on more so-
phisticated protocols such as fault-tolerant distributed clock
synchronization.

Acknowledgments
We thank Eric Cooper, Mike Lowry and César Muñoz for
their comments. This work was partially supported by NASA
Cooperative Agreement NCC1-02043.

10. REFERENCES
[1] M. H. Azadmanesh and R. M. Kieckhafer. Exploiting

omissive faults in synchronous approximate
agreement. IEEE Transactions on Computers,
49(10):1031–1042, 2000.

[2] S. Berghofer and T. Nipkow. Executing higher order
logic. In P. Callaghan, Z. Luo, J. McKinna, and
R. Pollack, editors, Types for Proofs and Programs
(TYPES 2000), volume 2277 of LNCS, pages 24–40.
Springer, 2002.

[3] C. Bergin. Faulty MDM removed. NASA
Spaceflight.com , May 18 2008. Available at
http://www.nasaspaceflight.com/2008/05/
sts-124-frr-debate-outstanding-issues

-faulty-mdm-removed/. (Downloaded Nov 28, 2008).
[4] C. Bergin. STS-126: Super smooth endeavor easing

through the countdown to l-1. NASA Spaceflight.com ,
November 13 2008. Available at
http://www.nasaspaceflight.com/2008/11/
sts-126-endeavour-easing-through-countdown/.
(Downloaded Feb 3,2009).

[5] Y. Bertot and P. Castéran. Interactive Theorem
Proving and Program Development. Coq’Art: The
Calculus of Inductive Constructions. Texts in
Theoretical Computer Science. Springer Verlag, 2004.

[6] S. Bishop, M. Fairbairn, M. Norrish, P. Sewell,
M. Smith, and K. Wansbrough. Rigorous specification
and conformance testing techniques for network
protocols, as applied to TCP, UDP, and Sockets. In
Proceedings of SIGCOMM 2005: ACM Conference on
Computer Communications (Philadelphia), published
as Vol. 35, No. 4 of Computer Communication Review,
pages 265–276, Aug. 2005.

[7] A. Brucker and B. Wolff. Test-sequence generation
with hol-testgen - with an application to firewall
testing. In B. Meyer and Y. Gurevich, editors, Tests
and Proofs, Lecture Notes in Computer Science 4454.
Springer-Verlag, 2007.

[8] R. W. Butler. A primer on architectural level fault
tolerance. Technical Report NASA/TM-2008-215108,
NASA Langley Research Center, 2008.

[9] C. Pasareanu and P. Mehlitz and D. Bushnell and K.
Gundy-Burlet and M. Lowry and S. Person and M.
Pape. Combining Unit-Level Symbolic Execution and
System-Level Concrete Execution for Testing NASA
Software. In International Symposium on Software
Testing and Analysis, pages 15–26. ACM Press, 2008.

[10] J. Chang and D. J. Richardson. Structural
specification-based testing: Automated support and
experimental evaluation. In Proceedings FSE’99, pages
285–302, Sept. 1999.

[11] K. Driscoll, B. Hall, H. Sivencrona, and P. Zumsteg.
Byzantine fault tolerance, from theory to reality. In
The 22nd International Conference on Computer
Safety, Reliability and Security SAFECOMP, Lecture
Notes in Computer Science, pages 235–248. Springer,
September 2003.

[12] J.-C. Filliâtre. Why: a multi-language multi-prover
verification tool. Research Report 1366, LRI,
Universit Ãl’ Paris Sud, Mar. 2003.

[13] A. Gargantini and C. Heitmeyer. Using model
checking to generate tests from requirements
specifications. In Proceedings of the 7th European
engineering conference held jointly with the 7th ACM
SIGSOFT international symposium on Foundations of
software engineering, pages 146–162. Springer-Verlag,
1999.

[14] J. Goodenough and S. Gerhart. Toward a theory of
test data selection. IEEE Transactions on Software
Engineering, June 1975.

[15] A. E. Goodloe, L. Lensink, and C. Muñoz. From
verified specifications to verifiable software. Technical
report, National Institute of Aerospace, 2008.

[16] F. Haftmann and T. A code generator framework for
Isabelle/HOL. In K. Schneider and J. Brandt, editors,
Theorem Proving in Higher Order Logics: Emerging
Trends Proceedings, number 364/07, 08 2007.

[17] M. Kaufmann, J. Moore, and P. Manolios.
Computer-Aided Reasoning: An Approach. Kluwer
Academic Publishers, Norwell, MA, USA, 2000.

[18] J. C. King. Symbolic execution and program testing.
Commun. ACM, 19(7):385–394,1976.

[19] Lamport, Shostak, and Pease. The Byzantine generals
problem. ACM Transactions on Programming
Languages and Systems, 4:382–401, July 1982.
Available at http:
//citeseer.nj.nec.com/lamport82byzantine.html.

[20] J.-C. Laprie. Dependability—its attributes,
impairments and means. In B. Randell, J.-C. Laprie,
H. Kopetz, and B. Littlewood, editors, Predictability
Dependable Computing Systems, ESPRIT Basic
Research Series, pages 3–24. Springer, 1995.

[21] P. Letouzey. A New Extraction for Coq. In H. Geuvers
and F. Wiedijk, editors, Types for Proofs and
Programs, Second International Workshop, TYPES
2002, Berg en Dal, The Netherlands, April 24-28,
2002, volume 2646 of Lecture Notes in Computer
Science. Springer-Verlag, 2003.

[22] NASA - Johnson Flight Center. Space shuttle
operational flight rules Volume A, A7-104, June 2002.
Available from http://www.jsc.nasa.gov
(Downloaded Nov 28, 2008).

[23] NASA Ames. Java PathFinder Version 3.1.1 User

Guide.
[24] T. Nipkow, L. Paulson, and W. Wenzel. Isabelle HOL

- A proof Assistant for Higher-Order Logic. Lecture
Notes in Computer Science 2283. Springer Verlag,
2002.

[25] S. Owre. Random testing in pvs. In Workshop on
Automated Formal Methods, 2006.

[26] J. Rushby. Systematic formal verification for
fault-tolerant time-triggered algorithms. IEEE Trans.
Softw. Eng., 25(5):651–660, 1999.

[27] S. A. Seshia, W. Li, and S. Mitra. Verification-guided
soft error resilience. In Proc. Design Automation and
Test in Europe (DATE), April 2007.

[28] P. Thambidurai and Y.-K. Park. Interactive
consistency with multiple failure modes. In 7th
Reliable Distributed Systems Symposium, pages
93–100, October 1988.

